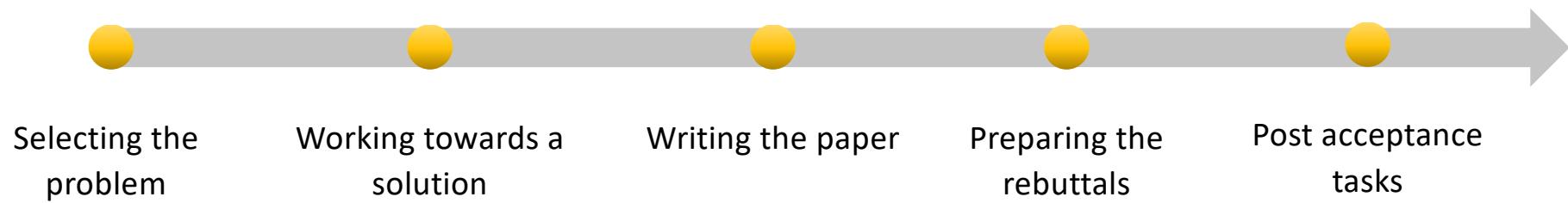
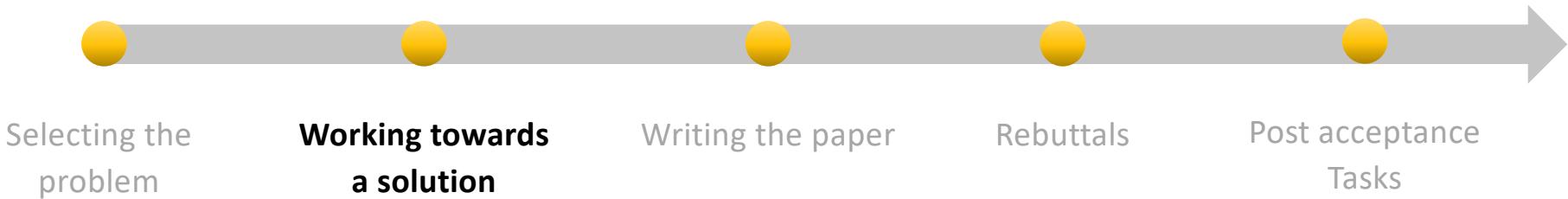

From Ideas to A* Papers: A Behind-the-Scenes Journey not Often Discussed

Joseph K J



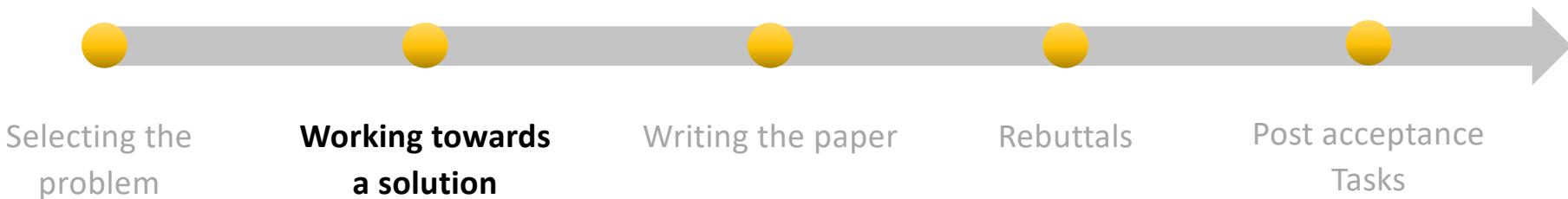
Observations might be biased towards Computer Vision and Machine Learning conferences.

Milestones



Milestones

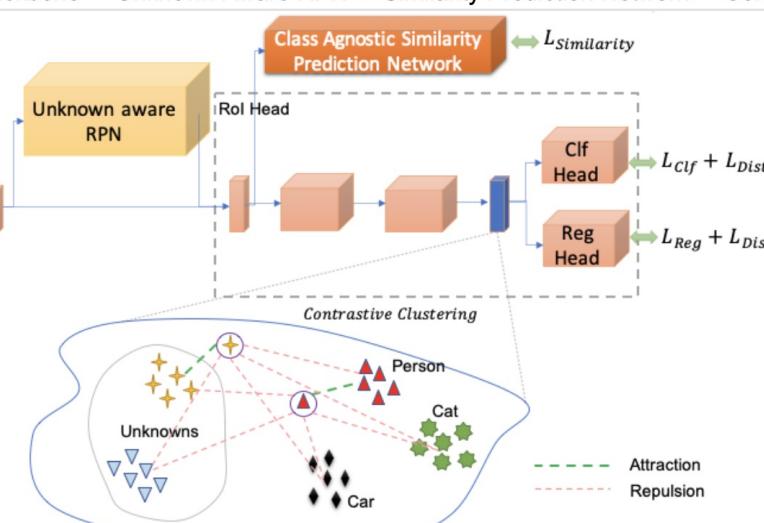
- Do something that you are really passionate about.
 - It's a roller-coaster, and your passion is your seat-belt
- Own the problem
 - It is your PhD thesis
- Practical tips
 - Select a topic that is not saturated.
 - Is of interest to the venues that you are targeting.
 - Even early on, shoot for the best venues.
 - Find the baseline paper that you are going to build on, ensure that the code is available.



- Setup your baseline.
- Iterate between coding and reading papers.
- Be organized with your code: use GitHub.

← → G github.com/JosephKJ/OWOD/commits/master?before=23890f188cd1a6801c6ac0e3dacd78b8572b8c29+70 [Open in app](#) Paused [New Chrome available](#) :

master All users All time


- o- Commits on Nov 12, 2020
 - iOD JosephKJ committed on Nov 12, 2020 68da418
- o- Commits on Nov 9, 2020
 - Saving feature store JosephKJ committed on Nov 9, 2020 81516e5
- o- Commits on Nov 6, 2020
 - Weibull distribution: Inference added JosephKJ committed on Nov 6, 2020 ea9f7d1
 - Weibull distribution JosephKJ committed on Nov 6, 2020 71480aa
- o- Commits on Nov 4, 2020
 - Updated the evaluation display. Ready for t1_std_frcnn. JosephKJ committed on Nov 4, 2020 9321996
 - Adding new imagesets JosephKJ committed on Nov 4, 2020 92312cc
- o- Commits on Nov 3, 2020

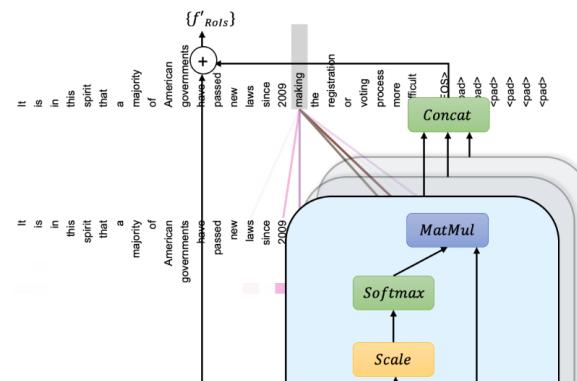
- Setup your baseline.
- Iterate between coding and reading papers.
- Be organized with your code: use GitHub.
- Stuck? First, talk to yourself.
 - Maybe a white-board
 - Write things down
 - Then discuss with others
(don't expect anything from anyone, if you get, be grateful)
- Be organized with your work: log it.
 - Be prepared to be disturbed.

	A	B	C	D	E	F
248				1) Mar 15 - Mar 21		
249	Papers					
250	1 Continual Unsupervised Representation Learning	NeurIPS 19	Introducing "Unsupervised Continual Learning": --- Task label and boundary is unknown. (Task aware setting) --- Each datapoint is not assigned label (Un-supervised Learning)	MNIST Omniglot		
251						
252						
253			A mixture of gaussian is assumed where each component is specific to each task. Each component is dynamically added.			
254			An extension to Variational Deep Embedding.			
255						
256	2 Unsupervised Continual learning and Self-Taught Associative Memory Heirarchies	LLD Workshop	They introduce a new STAM architecture that rivals CNN.		Problem definition is similar	
257		ICLR 2019	Slight few-shot flavour to the problem, as during inference, few labelled examples are used.			
258						
259	3 Automatically discovering and learning new visual categories with ranking statistics	ICLR 2020	Primarily focused on (un)supervised clustering of novel classes; a set of labelled base class images are available. Use RotNet to get a feature representation which is finetuned. Psuedo Labels are generated for the novel class images.			
260						
261						
262						
263						
264	Summary of main points discussed in the meeting (Salman)					
265	[17 Mar 20] ▶ Incremental Few-shot: See how we compare against the CVPR 2020 paper.					
266	▶ Extending the ECCV Submission					
267	→ CenterNet, RetinaNet					

	A	B	C	D	E	F	G	H
1	Idea 1	Auto-label unkowns and learn						
2		Self attentive maps						
3								
4	Idea 2	BNN instead of classifier and regressor						
5		- Uncertainly modelling.						
6								
7	Idea 3	Expose Outlier detection methodologies						
8								
9								
10	Idea 4	Inspiration from Active Learning?						
11								
12								
13	Idea 5	Would edge detection help for unkwnon detection as its class agnostic?	https://arxiv.org/pdf/1902.10903.pdf					
14								
15								
16	Idea 6	There are these papers which says that finetuninig with exemplar set is all that is required.						
17		- GDumb, ECCV 2020	https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123470511.pdf					
18		- Frustratingly Simple Few-Shot Object Detection, ICML 2020	https://proceedings.icml.cc/static/paper_files/icml/2020/2957-Paper.pdf					
19		Hence, why dont we just finetune to prevent Catastrophic forgetting with a small subset of data. How we select the data would be important then.						
20								
21								
22								
23								
24								

	A	B	C	D	E
1	Highlevel phases: Image \rightarrow Backbone \rightarrow Unknown Aware RPN \rightarrow Similarity Prediction Network \rightarrow Contrastive Clustering \rightarrow MixDist				
2					
3	(NB: All citations refer to the papers in the first sheet.)				
4	Component	Methodology	Positives	Negatives	Additional ways to impro
5	Unknown Aware RPN	Label top-k (based on objectness score) background proposals as Unknown.	Easy way to auto-label an unknown. Qualitative results are coherent.	- Hyper-parameter k, i, o	1. Some boundary detection loss to improve the objectn score.
6		Background proposals are those with $\text{IoU} < i$		- Seems to be a simple hack.	2. Better Uncertainty estim methodology (similar to the latent exploration method)
7					
8					

	A	B	C	D	E					
1	Highlevel phases (v1): Image -> Backbone -> Unknown Aware RPN -> Similarity Prediction Network -> Contrastive Clustering -> MixDist									
2	Highlevel phases (v2): Image -> Backbone -> RPN -> Similarity Prediction Network -> Contrastive Clustering -> Self Attentive Unknown Labeller -> MixDist Exemplar replay + Distillation									
3										
4										
5	Component	Methodology	Discussion	Positives	Negatives					
6	RPN	The standard RPN, which produces region proposals (objectness score and BB offsets). <small>It is class-agnostic.</small>								
7										
	2 Methodologies	2 Methodology-v1	1 Methodology-v2	Wilderness Results	Evaluation Metric	TODO	(old) Results	(old) Quant	<	>


A	B	C	D	E
---	---	---	---	---

11

12

Intuition is that the unknown object will be attended to by the known objects. To be more explicit, we can assume that some of the background region proposals would be attended more (measured in terms of the number of in-bound attention links (hyperparam `in_link`)). Such background proposals can be labelled as unknown.

Architecture of SAUL:

13

Vineeth N Balasubramanian
25 Sept 2020

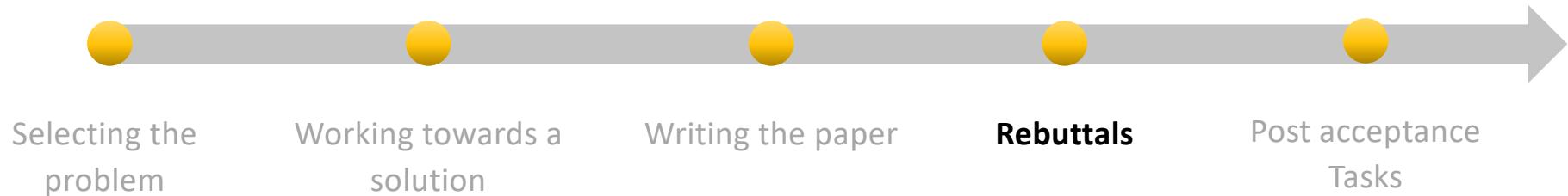
What is the logic for this? Do we mean that these are more likely to mislead object detectors as being objects, than a more amorphous background?

Deleted user
25 Sept 2020

Yes, and even more importantly, such unknown object might be automatically discovered.

Comments above copied from original document

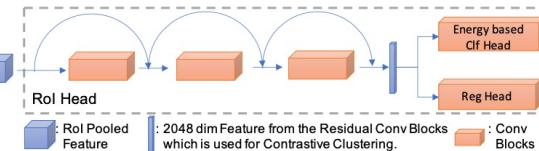
hyperparam: `in_link`


- Plan your writing: have a skeleton first.

	B	C	D	E	F	G	H	I		
13	Open World Object Detection									
14	Related Work	Methodology		Experiments and results				Conclusion		
15	Problem Formulation		Proposed Solution	Evaluation protocol	Implementation details	Main Results	Additional results			
16			- Contrastive clustering	- Data split	8 Tesla V100 GPUs	- Ability to reduce the confusion of an unknown being labelled as a known.	- Main Ablations			
17			- RPN Thresholding based auto-labelling	- Evaluation metrics	Batch size: 8; one image per GPU	- Ability to explicitly identify an unknown	- Time taken: training and inference			
18			- Energy based unknown identification		Custom dataloader which labels images according to whether it is known or unknown	- Incremental OD results	- Plot of clustering loss.			
19			- Balanced finetuning for addressing catastrophic forgetting. (Mitigating forgetting)		While training T_i , only classes in T_i are labelled, all the others are ignored.		- TSNE of latent space			
20					How the extra class of backgrounds are added		- Qualitative results			
21			- A unified solution to OWOD, which is a symphony of		Handling incremental class growth.		- Memory Size			
22										
23	Open woRld dEteCtOr									
24										
25										
26										
27	ons									

	B	C	D	E	F	G	H	I	J	K	L	
23	Method						Scorer: Measuring Slide's Quality					
24	<input checked="" type="checkbox"/>			Why RL to improve slide generation?								
25	<input checked="" type="checkbox"/>				- Dataset for SFT is impractical to collect.							
26	<input checked="" type="checkbox"/>			How to adapt RL with noisy / imperfect rewards								
27	<input type="checkbox"/>											
28	<input type="checkbox"/>	Coactive Learning a Slide Styler										
29	<input checked="" type="checkbox"/>		Preliminary									
30	<input checked="" type="checkbox"/>			Takeway: in expectation, if we have an improved version of the slide, it will help.								
31	<input type="checkbox"/>			We should introduce π^*								
32	<input type="checkbox"/>		Slide Styler									
33	<input type="checkbox"/>			We plan to learn a single module compising of planner and a coder that can take in components, current rendition and generate a stylized								
34	<input checked="" type="checkbox"/>			This single module is what we learn with coactive learning .								
35	<input checked="" type="checkbox"/>			Creating π^* similar to Tucker et al. needs human annotated data, but this is infeasible for us. Instead, we propose a way to sample and strictly								
36	<input checked="" type="checkbox"/>			Building a robust π^*								
37	<input type="checkbox"/>				How to generate improved feedback (π^*)?							
38	<input checked="" type="checkbox"/>					Qwen-VL - ZS						
39	<input checked="" type="checkbox"/>					Qwen-VL - FT or These models are trained only to make slight improvement, which greatly simplifies that ta						
40	<input type="checkbox"/>				How do we measure improvement?							
41	<input type="checkbox"/>					The scorer						
42	<input type="checkbox"/>					Show that it is good.						
43	<input checked="" type="checkbox"/>			Building single module compising of planner and a coder								
44	<input checked="" type="checkbox"/>				Data generation pipeline							
45	<input checked="" type="checkbox"/>				SFT							
46	<input type="checkbox"/>				DPO							

- Plan your writing: have a skeleton first.
- First draw the figures and write any algorithms (if you may have).
- Certain parts of the paper can start early
 - Related works: during your initial literature review phase
 - Intro: have pointers early on.
- Plan to finish at-least one week before the deadline.
 - Iterate through it, to make it perfect.


- Yes, it is possible to turn-around the papers with a clear rebuttal

000 We thank the reviewers for the positive feedback: *novel approach and problem setting (R1, R3), core ideas are interesting and worth explored (R2), addressed problem is very hard and very important for AI (R2), well-written (R1, R2, R3), literature survey is up to date and clearly explained (R1, R3), evaluation is well conducted (R2), extensive experiments and ablations to showcase different aspects (R3)*. Our source code and models will be publicly released.

008 **Reviewer 1 (R1) Name (OREO):** Thanks. We will rename
009 our method. **Relation with embedding learning (EL):**
010 Different from EL works, our approach performs clustering
011 by using contrastive constraints on *dynamic prototypes from each class* (Eq 1) instead of single class instances. This
012 is important for our OWOD problem since same class instances
013 are desired to be mapped together while they must be far from *all other class instances* simultaneously. To our
014 knowledge, we are the first to introduce a multi-way class-
015 level contrastive formulation for the challenging OWOD
016 problem. Further, contrastive constraints in most existing
017 EL methods (*e.g.*, He *et al.*, MoCo, CVPR’20) have higher
018 complexity and longer training times due to instance level
019 complexity and longer training times due to instance level

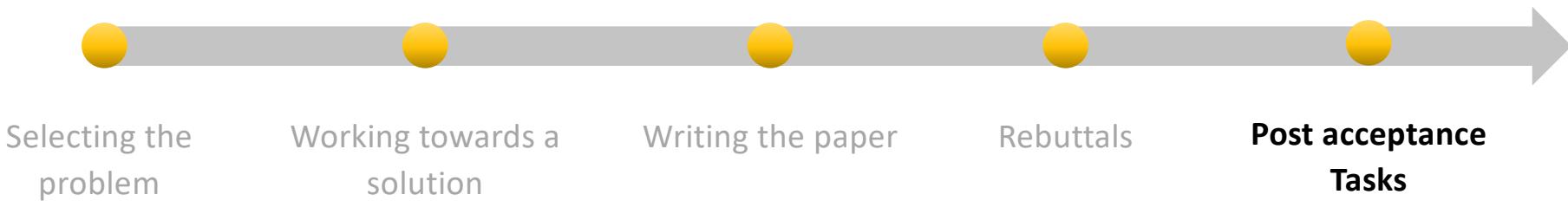
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074

Figure A1. RoI head architecture, showing 2048-dim feature vector used for contrastive clustering. Best view zoomed in.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074

fold: 1) it enables the model to cluster unknowns separately from known instances, thus boosting unknown identification; 2) it ensures instances of each class are well-separated from other classes, alleviating the forgetting issue (L266). The 2048-dim feature vector that comes out from residual blocks of RoI head (Fig A1) is contrastively clustered (L592). The contrastive loss is added to the Faster R-CNN loss and the entire network is trained end-to-end (L371). We will clarify in revision. **Role of Energy:** The intrinsic capability of EBMs [23] to assign low energy values to in-distribution data and vice-versa motivates us to use an energy measure to characterize whether a sample is from an unknown class. **Clarification regarding Unknown Identification:** An unknown is *not identified by thresholding* in our case, but by computing the likelihood of the data point w.r.t a learned Weibull distribution, which is fit only once at inference and takes just 1.78 sec. **Comparison with**

029 COCO as unknown, we need to re-annotate all images,
 030 which is laborious, as it takes $\sim 20k$ worker hours just for
 031 point annotation on COCO [27]. Auto-labeling region pro-
 032 posals with our method is an effort to address this prob-
 033 lem (Sec 4.2), but is not a substitute for ground-truth since
 034 pseudo labels are noisy. However, we show that our method
 035 can use these noisy pseudo labels to aid latent space sepa-
 036 ration via contrastive clustering, which helps better classifi-
 037 cation by the energy-based unknown identifier. **On Keeping**
 038 **all Data:** The storage and compute expense will grow
 039 unbounded if we are to store all data and retrain a model
 040 from scratch each time. We follow standard incremental
 041 learning settings [1,4,5,20,21,24,32,43,44,52,57] in this re-
 042 gard, which work without storing all data. We will clarify
 043 this in revision. **Difference from Open Set/World:** Fig 1
 044 shows how our OWOD problem differs to Open Set/World.
 045 We would like to bor-
 046 row R2’s comment that
 047 OWOD setting is ‘*very*
 048 *hard and very important for AI*’. **Additional**
 049 **Baseline:** As suggested, we compare our method with [2,
 050 3] in Tab A1 and will include these results in the revision.
 051 **Reviewer 2 (R2) More Details on Contrastive Cluster-**
 052 **ing:** The motivation for using contrastive clustering is two-


Feature Compatibility. Our variance matching helps im-
 053 prove feature compatibility. Thank you for sharing the idea
 084 of fixing the classifier. We will explore this promising di-
 085 rection as a next step and cite Shen *et al.*, Pernici *et al.*
 086

Reviewer 3 (R3) Failure Cases: Occlusions and crowd-
 087 ing of objects are cases where our method tends to get
 088 confused (*storage*, *walkman* and *bag* not detected as *un-
 089 known* in Figs. S5, S7). Difficult viewpoints (such as back-
 090 side) also lead to some misclassifications (*giraffe* \rightarrow *horse* in
 091 Figs. 4, S6). We have also noticed that detecting small
 092 *unknown* objects co-occurring with larger known objects
 093 is hard. We thank R3 and will include detailed fail-
 094 ure analysis in revision. **Recall Threshold:** A high re-
 095 call (0.8) was set to evaluate in a challenging scenario.
 096 At 0.5, we observe a slight gain in WI to 0.019. The
 097 change is not drastic since WI computation involves ra-
 098 tio of the precisions at a given recall. **Temperature:**
 099

We fixed $T=1$ (L121 in Suppl.). Soft-
 100 ening the energies a bit more ($T=2$)
 101 gives slight improvement in unknown
 102 detection (A-OSE and WI), however
 103 increasing it further hurts as evident from adjacent table.

T	WI(\downarrow)	A-OSE(\downarrow)	mAP(\uparrow)
1	0.0219	8234	56.34
2	0.0214	8057	55.68
3	0.0411	11266	55.51
5	0.0836	12063	56.25
10	0.0835	12064	56.31

Energy Motivation: Kindly see R2 (Role of Energy).
Other Issues: We thank R3 and will cite and discuss recent
 106 detectors. Supplementary will also be referred adequately.
 107

- Make a webpage, YouTube video etc.
- Made your code and models public.

← → ⌂ github.com/JosephKJ/OWOD ⌂ Open in app ⌂ Paused New Chrome available ⌂

JosephKJ / OWOD

Code Issues 30 Pull requests Discussions Actions Projects Wiki Security 12 Insights Settings

OWOD Public

Unpin Unwatch 22 Fork 154 Star 1.1k

master 2 Branches 0 Tags Go to file Add file Code

JosephKJ Update README.md 23890f1 · 4 years ago 77 Commits

File	Message	Time
configs	Updating paths.	5 years ago
datasets	Updating the finetuning image_list, the earlier version wa...	5 years ago
demo	Detecron2	6 years ago
detecron2	Updating the finetuning image_list, the earlier version wa...	5 years ago
dev	Detecron2	6 years ago
docker	Detecron2	6 years ago
docs	Add files via upload	5 years ago
projects	Detecron2	6 years ago
tests	Detecron2	6 years ago
tools	Auxillary changes (CVPR-21 submit tip)	6 years ago
GETTING_STARTED.md	Detecron2	6 years ago
INSTALL.md	Detecron2	6 years ago

About (CVPR 2021 Oral) Open World Object Detection

Josephkjin

open-world object-detection cvpr
incremental-learning energy-based-model
continual-learning detectron2
contrastive-learning cvpr2021

Readme Apache-2.0 license Activity 1.1k stars 22 watching 154 forks

Contributors 2

JosephKJ Joseph K J
salman-h-khan Salman Khan

TITLE	CITED BY	YEAR
Towards open world object detection KJ Joseph, S Khan, FS Khan, VN Balasubramanian Proceedings of the IEEE/CVF conference on computer vision and pattern ...	789	2021

- Confusion about output of RPN block**
#84 · by giangnt071098 was closed on May 12, 2022
- KeyError: 'Non-existent config key: OWOD'**
#83 · by chengtao-lv was closed on Jan 19, 2022
- Unable to determine the device handle for GPU 0000:02:00.0: GPU is lost. Reboot the system to recover this GPU**
#81 · by JohnWuzh was closed on May 12, 2022
- ValueError: min() arg is an empty sequence & t1_clustering_with_save**
#80 · by CtCCtV was closed on May 12, 2022
- Not able to detect unknowns**
#79 · by Jiyang-Zheng was closed on Dec 24, 2021
- Where is the code of "4.3. Energy based unknown identifier"**
#78 · by lsqxxx was closed on Dec 7, 2021
- I cannot reproduce the result either. Please help, thank you very much!**
#77 · by YujunLiao was closed on May 12, 2022
- Confusion about the t2_train/t2_ft procedure**
#76 · by YujunLiao was closed on May 12, 2022
- 万事俱备只欠东风**
#75 · by Allenstin was closed on Dec 4, 2021
- This project, how i train my own data and test?**
#74 · by guyue1994 was closed on Dec 4, 2021
- How t1_train.txt is generated.**
#73 · by Ixqiaoyixuan was closed on Dec 4, 2021
- question about energy .png**
#72 · by PowderYu was closed on May 12, 2022

Same START_ITER values in t*_train.yaml and t*_ft.yaml #40

[Edit](#)

[New issue](#)

[Closed](#)

mmaaz60 opened on May 15, 2021

...

Hi,

I noticed that the value of `START_ITER` is the same in all corresponding `train` and `ft` configs. For example, it is `START_ITER: 18000` in both `t2_train.yaml` and `t2_ft.yaml`. As per the script `run.sh`, the finetuning (`t*_ft.yaml`) is using the weights generated from the corresponding `t*_train.yaml` as starting point, so the `START_ITER` shouldn't be the same in both files. Please guide.

Thanks

[Create sub-issue](#) [▼](#) [😊](#)

JosephKJ on May 15, 2021

Owner [...](#)

Hi Maaz,

The `START_ITER` that you are referring to is the iteration from which we start the clustering process. Kindly note that we don't do clustering while finetuning. Kindly see [this flag](#).

I am afraid that you are confusing this with `MAX_ITER`, which controls the number of iterations that the model is trained for.

Kindly let me know whether this clarifies your doubt.

Thanks,
Joseph

Assignees

No one - [Assign yourself](#)

Labels

No labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

[💻 Code with agent mode](#) [▼](#)

[Create a branch](#) for this issue or link a pull request.

Customize

[🔕 Unsubscribe](#)

Reason for the slow response last month #35

[Edit](#)[New issue](#)

 Closed

JosephKJ opened on May 8, 2021

[Owner](#)[...](#)

Hi all,

My apologies for the slow response during April 2021. I was seriously hospitalized with COVID pneumonia. I lost 20 % of my lungs to the virus. I am improving now. Please find the discharge summary attached along, if that helps you to understand better.

[discharge_summary.pdf](#)

Thanks,
Joseph

[Create sub-issue](#) [▼](#)

 JosephKJ mentioned this on May 8, 2021

 [\[resolved\]](#) Can anyone reproduce the results? (my results attached) #26

 JosephKJ closed this as [completed](#) on May 11, 2021

qianyizhang on Sep 17, 2021

Assignees

No one - [Assign yourself](#)

Labels

No labels

Projects

No projects

Milestone

No milestone

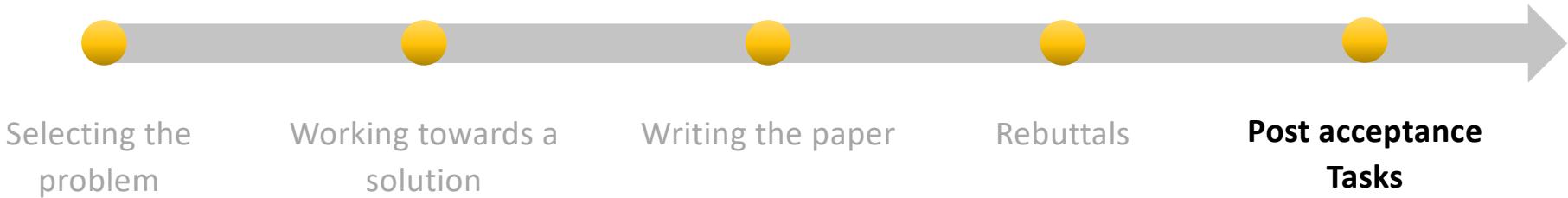
Relationships

None yet

Development

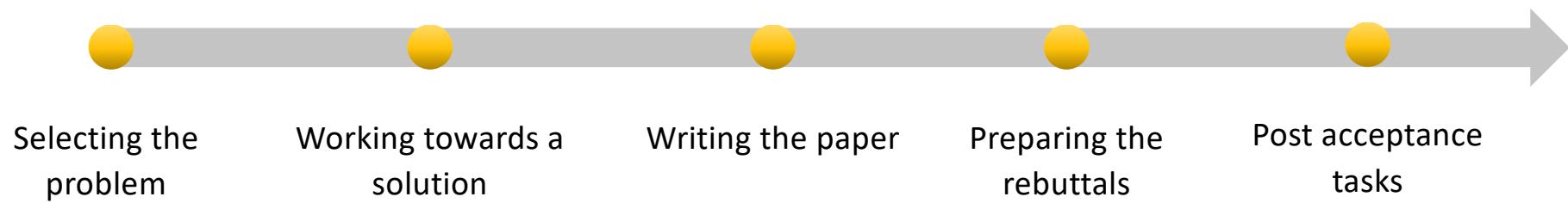
 [Code with agent mode](#) [▼](#)

[Create a branch](#) for this issue or link a pull request.


Customize

 [Unsubscribe](#)

You're receiving notifications because you're


stay strong!

- Make a webpage, YouTube video etc.
- Made your code and models public.
- Prepare for your talk and presentation well: giving a 5 mins talk is harder than giving a 30 mins talk!
- Plan your travel!

Milestones

Failures are blessing-in-disguise

The whole system is noisy, please don't take it personally. Improve your work and move on.

Don't give up easily

If you truly love what you are doing, and own it, you will not let go of it.

Vineeth N Balasubramanian

ભારતીય સ્નોર્કેટિક વિજ્ઞાન સંસ્થાન
ભારતીય પ્રોફોગિકી સંસ્થાન હૈદરાબાદ
Indian Institute of Technology Hyderabad

Salman Khan

Fahad Khan

جامعة محمد بن زايد
لذكاء الاصطناعي
MOHAMED BIN ZAYED UNIVERSITY
OF ARTIFICIAL INTELLIGENCE

PhD days are the best phase of your life,
enjoy every bit of it!

Thank you!